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Darcy’s law extension for 2-phase flow

“...the obvious futility of attempting to solve
these [Navier-Stokes] equations for
multiply connected passages composed of
the pores of a porous medium has

necessitated a direct empirical solution of
the problem.”

M.Muskat and M.Meres The flow of heterogeneous fluids
through porous media Physics, 1936



Pore-network model

“The use of high speed
make posélble tests of
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New opportunities

3D reconstruction of the
pore space

o X-ray computer
tomography (CT):
micron-scale resolution

e Focused-ion-beam (FIB):
nanometer scale

e Computing power
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Outline

 Maximal Inscribed Spheres method
— Capillary equilibrium
— Verification

e Solving flow equations

— The method of artificial compressibility
— The curse of dimensionality: domain
partitioning

* Relative permeability curves




Maximal inscribed spheres:
fluid distribution
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Maximal inscribed spheres:
fluid distribution
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Maximal inscribed spheres:
fluid distribution

PC :pnw — pW: ZG/r



Maximal inscribed spheres

e Assumptions
— Capillary equilibrium
— Disperse saturation is negligible
* Implementation
— Input: 3d binary image of the pore space
— 3D maximal radii table
— Connedctivity: cluster search
— Large input data sets



Maximal inscribed spheres:
verification
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MIS Calculations
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The method of artificial compressibllity

A.Chorin: Journal of Computational Physics 1967

Computational parameters:
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Example: Stokes flow

e Convergence is critically
Important for estimation of
Darcy velocity

e A severe criterion must be
Imposed
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“The Curse of Dimensionality”

e Good news:
— High-resolution images -
accurate discretization
e Bad news:

— 5mmx5mmx5mm at 5
micron resolution = 1GB

— Millions of grid cells -
enormous volume of
computations




Slicing the whole sample into layers

Workaround:
Processing the whole
Image by parts




Evaluation of relative permeabillity curves

Wetting fluid Non-wetting fluid

MIS-calculated fluid distribution



Relative permeabillity evalculation
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MIS-calculations Wyckoff & Botset 1936



Summary and conclusions
MIS-calculations + FD simulations:

Benefits:
— Partitioning of a large sample - distributed computations
— Analysis of the digital image bypassing pore network extraction
— Large high-resolution images can be processed on a desktop
computer
Weaknesses
— Severe criterion for convergence
— “The curse of dimensionality”

A promising approach for routine applications

Generalizations

— Modeling of the impact of mechanical deformation,
mineralization, etc
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